BETYDELSEN AV BORTFORSLING AV ALGER FÖR REKRYTERING AV PLATTFISK PÅ GOTLAND

Rapporter om natur och miljö | Rapport nr 2015:12
Titel: Betydelsen av bortforsling av alger för rekrytering av plattfisk på Gotland
Rapportnummer: 2015:12
Diarienummer: 530-1917-14
Rapportansvarig/Författare: Jesper Marinsson, Campus Gotland, Uppsala universitet
Foto | omslagsbild: Ulf Smedberg
Foto | inlag: Anges i anslutning till bild.
Utgiven av: Länsstyrelsen i Gotlands län
Tryckår: 2015
Tryckeri: Länsstyrelsen i Gotlands län, Visby. (Vid externt tryckeri anges tryckeriets namn och ort)

Rapporten finns att hämta i PDF-format på Länsstyrelsens webbplats:
www.lansstyrelsen.se/gotland
BETYDELSSEN AV BORTFORSLING AV ALGER FÖR REKRYTERING AV PLATTFISK PÅ GOTLAND

Författare

Jesper Martinsson
Fil.dr. Marinekologi
Forskningsstationen i År
Uppsala Universitet
Sammanfattning
Bakgrund

Övergödning är ett stort problem i Östersjön som förstört habitat för många arter, i de stora djupen såväl som vid kusten. För att säkerställa rekryteringen av piggvar i framtiden kan åtgärder för att minska halterna av kväve och fosfor i plattfiskarnas uppväxthabitat vara nödvändiga. Bortforsling av alger i dessa områden kan vara en bra metod. Om åtgärden minskar sikt djupet kan också piggvarens möjligheter att finna föda förbättras då det är en visuell predator som är beroende av arter i den fria vattenmassan.

Det är emellertid oklart om bortforsling av alger verkligen har en positiv effekt på överlevnad och rekrytering. Det går inte att utesluta att åtgärden tvärtom skadar piggvarens och flundrans uppväxthabitat och försämrar arternas möjlighet till reproduktion. Om det senare är fallet kan
tidpunkten för framtida rensningar av vikar behöva begränsas. Oklarheterna ovan behöver utredas inför framtagandet av policydokumentet.

Syfte
Syftet med projektet är att ta reda på om bortforsling av tång och alger vid strandkanten har en effekt på levnadsförhållandena för yngel av piggvar och flundra med betydelse för överlevnad och rekrytering till det vuxna beståndet.

Mål
Utföra en kvantitativ studie på Gotland där områden som rensats och områden som ej rensats jämförs i fråga om täthet och storlek av piggvar och flundra samt siktdjup (turbiditet), organiskhalt och syrehalt.

Definitioner
Släke: Ett gotländskt ord för dött organiskt material i form av tång och alger som ansamlas i vikar och stränder.

0-grupp: Årsyngel av plattfisk

1+: Yngel som kläcktes förra säsongen eller äldre

Rekrytering: Tillskott av nya individer till det juvenila eller vuxna beståndet.
Metod

Fältprovtagningar

Del 1 – Regional skala
Fältprovtagningar utfördes 28 juli-26 augusti 2014 samt 27 juli – 21 augusti 2015 i totalt 19 områden (Figur 1) på Gotland. Av dessarensades nio områden. Provtagningarna utfördes vid ett tillfälle i varje område då uppskattningar av mängden årsynel av piggvar och flundra gjordes samt behovet av rensning och mängden släke i vattnet. Tre slumpmässiga mätningar av temperatur och syrehalt togs på 0,2 m och 0,6 m djup vardera. Även tre slumpmässiga vattenprov (500 ml) för dessa djup togs för senare uppskattning av turbiditet på forskningsstationen i Ar. Ett sedimentprov (500 ml) togs även på 0,5 m djup för uppskattning av organisk halt i sedimenten, kornstorlek och sedimentens sorteringsgrad. Fisken samlades in med hjälp av en landvad; en minitrål som drogs längs med botten över en bestämd area (89,4 m²). Landvaden har en kopp i ena änden där fångsten samlas. Koppen tömdes i en back för genomgång direkt efter varje drag då längden för alla individer av piggvar och flundra samt djupet de fångades på, deras vridenhet, mängden släke i draget samt avståndet till stranden noterades. Totalt tio drag utfördes slumpmässigt i varje område där fem drag utfördes parallellt mot stranden på 0,2 m och 0,6 m djup vardera. Fisken förvarades i syresatta kylväskor tills de kunde släppas utan risk att fångas igen. Behovet av rensning uppskattades på en femgradig skala där 1 motsvarade mycket litet behov och 5 mycket stort behov. Mängden släke i vattnet uppskattades i varje drag med landvaden på en skala från 0-10 där 0 motsvarar ingen släke och 10 så mycket släke att landvaden måste dras in på land och tömmas bakvägen.
Figur 1. Karta över de undersökta områdena i del 1 och 2 (GIS-lager hämtat från Baltic GIS Portal).
Del 2 – mikro skala

Provtagningarna utfördes på samma sätt som för den regionala studien med undantaget att endast tre drag per djup utfördes samt endast två mätningar per djup av temperatur och syrehalt. Även två prover per djup togs för senare uppskattning av turbiditet. Ett prov för uppskattning av organisk halt i sedimenten togs i varje område vid första fältprovtagningen.

Uppskattning av miljövariabler

Turbiditet

Syrehalt
Syrehalten uppskattades med en syremättare i enheterna mg per liter (mg/l) och procent (%).

Organisk halt

Kornstorlek och sorteringsgrad
Sedimentproverna torkades i 60°C i minst 24 timmar varefter de delades upp i olika kornstorleksfraktioner med U.S. standard maskstorlekarna #230, #60, #10 och #5. De motsvarar gränser mellan sand och grov silt (#230), medium sand och fin sand (#60), grus och grov sand (#60) och grovgrus och grus (#5 på Wentworth’s storlekskala (Boggs 2005)). Vikten för varje fraktion uppskattades med en noggrann på 0,001 g. Medelvikten av fraktionerna från varje prov användes för att uppskatta den genomsnittliga kornstorleken i sedimentet med hjälp av method of moments (Krumbein and Pettijohn 1938). Sorteringsgraden motsvarar standardavvikelsen av den procentuella andelen av varje fraktion i provet. Konsultera Boggs 2005 för en detaljerad beskrivning av beräkningen. Låga värden indikerar ett välsorterat och högre värden ett icke-välsorterat sediment i relation till kornstorlek. Kornstorlek och sorteringsgrad uppskattades endast 2014 (Tabell 1). Kornstorleken var i medel 1,0135 mm och varierade mycket lite mellan områdena (sd 0,00561).
Kornstorleken ligger precis på gränsen mellan grov sand och mycket grov sand med övervikt på den senare.

Tabell 1. Redovisning av kornstorlek och sorteringsgrad för de undersökta områdena.

<table>
<thead>
<tr>
<th>Område</th>
<th>Kornstorlek (mm)</th>
<th>Wentworth size class</th>
<th>Sorteringsgrad (φ)</th>
<th>Sorteringsgrad (klass)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bunge</td>
<td>1,00526</td>
<td>Mycket grov sand</td>
<td>0,15346</td>
<td>Mycket välsorterat</td>
</tr>
<tr>
<td>Ekeviken</td>
<td>1,01760</td>
<td>Mycket grov sand</td>
<td>0,25817</td>
<td>Mycket välsorterat</td>
</tr>
<tr>
<td>Fröjel</td>
<td>1,00651</td>
<td>Mycket grov sand</td>
<td>0,16737</td>
<td>Mycket välsorterat</td>
</tr>
<tr>
<td>Gnisvärd</td>
<td>1,01747</td>
<td>Mycket grov sand</td>
<td>0,25749</td>
<td>Mycket välsorterat</td>
</tr>
<tr>
<td>Herta</td>
<td>1,01230</td>
<td>Mycket grov sand</td>
<td>0,21998</td>
<td>Mycket välsorterat</td>
</tr>
<tr>
<td>Hide</td>
<td>1,01856</td>
<td>Mycket grov sand</td>
<td>0,26527</td>
<td>Mycket välsorterat</td>
</tr>
<tr>
<td>Holmhällar</td>
<td>1,00297</td>
<td>Mycket grov sand</td>
<td>0,13197</td>
<td>Mycket välsorterat</td>
</tr>
<tr>
<td>Kappelshamn</td>
<td>1,00960</td>
<td>Mycket grov sand</td>
<td>0,19753</td>
<td>Mycket välsorterat</td>
</tr>
<tr>
<td>När1</td>
<td>1,00129</td>
<td>Mycket grov sand</td>
<td>0,09615</td>
<td>Mycket välsorterat</td>
</tr>
<tr>
<td>När2</td>
<td>1,01677</td>
<td>Mycket grov sand</td>
<td>0,25408</td>
<td>Mycket välsorterat</td>
</tr>
<tr>
<td>Raudstajnssand</td>
<td>1,01248</td>
<td>Mycket grov sand</td>
<td>0,22142</td>
<td>Mycket välsorterat</td>
</tr>
<tr>
<td>S:t Olofsholm</td>
<td>1,00601</td>
<td>Mycket grov sand</td>
<td>0,16174</td>
<td>Mycket välsorterat</td>
</tr>
<tr>
<td>Sandviken ER</td>
<td>1,01739</td>
<td>Mycket grov sand</td>
<td>0,25841</td>
<td>Mycket välsorterat</td>
</tr>
<tr>
<td>Sandviken R</td>
<td>1,01838</td>
<td>Mycket grov sand</td>
<td>0,26612</td>
<td>Mycket välsorterat</td>
</tr>
<tr>
<td>Sjaaustru</td>
<td>1,01675</td>
<td>Mycket grov sand</td>
<td>0,25299</td>
<td>Mycket välsorterat</td>
</tr>
<tr>
<td>Slite</td>
<td>1,01519</td>
<td>Mycket grov sand</td>
<td>0,24200</td>
<td>Mycket välsorterat</td>
</tr>
<tr>
<td>Tjäller</td>
<td>1,01358</td>
<td>Mycket grov sand</td>
<td>0,22974</td>
<td>Mycket välsorterat</td>
</tr>
<tr>
<td>Åminne</td>
<td>1,01210</td>
<td>Mycket grov sand</td>
<td>0,21839</td>
<td>Mycket välsorterat</td>
</tr>
<tr>
<td>Ångman</td>
<td>1,01785</td>
<td>Mycket grov sand</td>
<td>0,25960</td>
<td>Mycket välsorterat</td>
</tr>
<tr>
<td>Lau ER</td>
<td>1,01856</td>
<td>Mycket grov sand</td>
<td>0,26672</td>
<td>Mycket välsorterat</td>
</tr>
<tr>
<td>Lau R</td>
<td>1,01750</td>
<td>Mycket grov sand</td>
<td>0,26308</td>
<td>Mycket välsorterat</td>
</tr>
</tbody>
</table>

Rensning
Bortförsling av släke i de resenade områdena i delstudie 1 utfördes av ett antal olika aktörer där släke togs upp manuellt med krattor och andra handredskap eller diverse lantbruksmaskiner samt mer anpassade redskap (se bilaga A). Rensningarna på de flesta stränder utfördes emellertid av Smedbergs Gård AB. Rensningarna i dessa områden utfördes i en trestegsprocess där det första steget innefattade bortförsel av tång och alger på strandkanten och vattenbrynet så fort som möjligt efter att materialet kommit upp på land. Traktorlastare med olika slags grepar användes när större mängder material försledes bort. En ombyggd och modifierad redskapsbärare, med redskap utvecklade för ändamålet, användes för uppförsling av material i vattenkanten på land. I det andra steget ytplanerades stranden med en modifierad harv för att lättare kunna transporterera bort det organiska materialet och underlätta kommande hopsamlingar. Det tredje steget innefattade bortförsel av organiskt material som blandats in i sanden vid steg ett och tvågenom sällning. Denna åtgärd utfördes med hjälp av en specialmaskin ”Beach Tech”.
Resultat

Del 1 – regional skala

Fisk
Totalt fångades 2320 respektive 366 årsyngel av flundra och piggvar under provtagningarna 2014. Antalet individer var mycket lägre 2015 då endast 164 årsyngel av flundra och 112 av piggvar fångades (Figur 2).

Vid en statistisk analys konstaterades att det fanns en signifikant interaktionseffekt mellan faktorerna Rensning och År för både piggvar och flundra (ANOVA, p< 0.01). Det innebär att skillnaderna i täthet (antal/m²) mellan rensade och ej rensade områden ser olika ut mellan åren. För piggvaren var tätheten högre i de icke-rensadeområdena båda åren men skillnaden var större 2014 (Figur 3). Flundran uppvisade samma mönster som piggvaren 2014 men 2015 var tätheten högre för de rensade områdena (Figur 2). Det fanns i övrigt ingen effekt av djup eller avståndet till stranden på tätheten för någon av arterna.

Figur 3. Medeltätheten (ind./m²) för årsyngel av piggar i rensade och ej rensade områden 2014 och 2015. Felstaplarna anger 95 % konfidensintervall.

Figur 4. Medeltätheten (ind./m²) för årsyngel av flundra i rensade och ej rensade områden 2014 och 2015. Felstaplarna anger 95 % konfidensintervall.
I övrigt kunde en negativ effekt av mängden släke i landvadsdraget konstateras (regression, $\beta = -0.007$, $F=4.98$, $p<0.05$). Med andra ord, vid högre uppskattad mängd släke observerades generellt sett lägre täteter av juvenil flundra (Figur 5). Inget samband hittades för piggvar (regression, $\beta = 0.0004$, $F=0.40$, $p=0.52$, Figur 6).

Figur 5. Sambandet mellan täheten av 0-grupp flundra och uppskattad mängd släke i landvadsdraget.

Figur 6. Sambandet mellan täheten av 0-grupp piggvar och uppskattad mängd släke i landvadsdraget.
Vid analys av skillnader i längd hittades en interaktionseffekt för flundra mellan Rensning och År (ANOVA, df=3143, F=18.86, p<0.01). Effekten ser ut att bestå i en större skillnad mellan rensade och ej rensade områden 2015 jämfört med 2014 (Figur 7). Medellängden är betydligt lägre i de rensade områdena 2015. För piggvar fanns endast en skillnad mellan år (ANOVA, df=530, F=13.64, p<0.001) där medellängden var större 2015 (Figur 8).
Miljöfaktorer

Turbiditet
Det fanns ingen skillnad i turbiditet mellan rensade och ej rensade områden något av åren. Det fanns dock en skillnad mellan år (Figur 9). Inga skillnader mellan djup kunde konstateras.

![Figur 9. Medelturbiditet (siktdjup) för rensade och ej rensade områden för 2014 och 2015. Felstaplarna anger 95 % konfidensintervall](image-url)
Syrehalt
För syrehalten fanns en statistiskt signifikant interaktion mellan faktorerna Rensning och År. Det innebär att det inte var någon skillnad i syrehalt mellan rensade och ej rensade områden 2014 samt att syrehalten var lägre generellt sett i de rensade områdena 2015 (Figur 10). Inga skillnader mellan djup kunde konstateras.

Figur 10. Syrehalt (%) i medel för rensade och ej rensade områden för 2014 och 2015. Felstaplarna anger 95 % konfidensintervall
Organisk halt
Det fanns en statistiskt signifikant interaktionseffekt mellan faktorerna Rensning och År. Det innebär i detta fall att det inte fanns någon skillnad i organiskt halt mellan rensade och ej rensade områden 2014 men att den organiska halten var lägre i de rensade områdena 2015 (Figur 11).

![Diagram](image_url)

Figur 11. Organisk halt (%) i medel för rensade och ej rensade områden 2014 och 2015. Felstaplarna anger 95 % konfidensintervall.
Behov
Det fanns en statistiskt signifikant skillnad i det uppskattade behovet av rensning mellan rensade områden och ej rensade områden (Figur 12). Behovet var något mindre i de rensade områdena (Wilcoxon test, p<0,01).

Figur 12. Redovisning av medianen för behov av rensning (1-5) där högre värde motsvarar högre behov utifrån hur mycket släke som låg i strandkanten.
Del 2 - mikroskala (Lausviken)

Fisk
Totalt fångades 81 respektive 7 årsyngel av flundra och piggvar under provtagningarna 2014. Antalet individer var mycket lägre 2015 då ingen 0-gruppindivid fångades i något av områdena, endast äldre flundror (Figur 13).

![Antal individer för piggvar och flundra uppdelat på 0-grupp samt fjolårsyngel eller äldre (1+) 2014 och 2015.](image)

Figur 15. Medeltäthet (ind./m²) för piggvar 2014 för den rensade och ej rensade delen av Lausviken under vecka 33 till 35. Släken började rensas vecka 33. Felstaplarna anger 95 % konfidensintervall.
Det fanns inget samband mellan mängden släke i landvadsdragen och tätheten för någon av arterna (Figur 16 & 17).

Figur 16. Sambandet mellan täheten av 0-grupp flundra och uppskatad mängd släke i landvadsdraget.

Figur 17. Sambandet mellan täheten av 0-grupp piggvar och uppskatad mängd släke i landvadsdraget.
Vid analys av fiskarnas längder hittades en skillnad mellan områdena (ANOVA, df = 195, F = 4.05, p < 0.05). Det var dock på gränsen till en interaktionseffekt, att områdena turades om mellan veckorna i fråga om högst medellängd, vilket man kan se på att linjerna korsar varandra (Figur 18). För piggvaren fanns en statistiskt signifikant skillnad mellan veckor (ANOVA, df =11, F = 4.98, p<0.05, figur 19).

Figur 19. Medellängden (mm) för piggvar i den rensade och ej rensade delen för vecka 33 och 35 2014.
Miljöfaktorer

Turbiditet
Det fanns ingen statistiskt signifikant skillnad i turbiditet mellan områdena, varken före eller efter rensning. Det fanns dock en skillnad mellan veckor 2015 oberoende av rensning (ANOVA, F=45,22, p<0,001) då turbiditeten steg drastiskt vecka 35 (Fig. 20 & 21). Inga skillnader mellan djup kunde konstateras.
Syrehalt
Syrehalten var generellt högre i den ej rensade delen av Lausviken 2014 (ANOVA, df=27, F=5,52, p<0,05, figur 22). Under 2015 kunde ingen skillnad mellan områdena konstateras (Figuur 23). Inga skillnader mellan djup kunde konstateras.

Figur 22. Medelsyrehalten (%) i det rensade och ej rensade området i Lausviken 2014. Felstaplarna anger 95 % konfidensintervall.

Figur 23. Medelsyrehalten (%) i det rensade och ej rensade området i Lausviken 2015. Felstaplarna anger 95 % konfidensintervall.
Det fanns en signifikant skillnad i syrehalt mellan 2014 (ANOVA, df = 27, F = 13,35, p<0,01) och 2015 (ANOVA, df = 32, F = 4,40, p<0,05) oberoende av rensning (Figur 24 & 25). Syrehalten var lägre på 0,6 m 2014 och högre på 0,6 m 2015.

![2014 graph](image)

Figur 24. Syrehalt (%) över djup i det rensade och ej rensade området i Lausviken 2014.

![2015 graph](image)

Figur 25. Syrehalt (%) över djup i det rensade och ej rensade området i Lausviken 2014.
Organisk halt

Diskussion

Fisk

Miljövariabler

Rensningarna verkar ha haft en effekt på den organiska halten i sedimenten. På den regionala skalan (del 1) var halten lägre i de rensade områdena. På mikroskalan (del 2) hade den organiska halten minskat i den rensade och ökat i den ej rensade delen. Syrehalten har varit generellt sett hög i alla områden och snuddat 100 % vid stort sett alla provtagningar förutom i Lau i slutet av säsongen 2015 på grund av extremt grumligt vatten. Turbiditeten är i övrigt en variabel som kan uppvisa en mycket hög variation i tid. För att få en bra bild kan det därför vara bra att genomföra tätare provtagningar under säsongen eller året.

Slutsats

Det är svårt utför från denna tvååriga studie att dra några egentliga slutsatser kring effekten av rensningarna på mängden årsyngel av piggvar och flundra. Det finns således heller inga implikationer från denna studie att rensningar måste begränsas för att inte ha en negativ effekt på yngel av piggvar och flundra. Eftersom det är så många andra faktorer som spelar in skulle provtagningar behöva göras under ett flertal år. Vi kan dock slå fast att den organiska halten har minskat i de rensade områdena.

27
Provtagningar under fler år samtidigt som rensningarna genomförs skulle dock behöva genomföras för att kunna visa att det är en trend som håller i sig. Även ytterligare provtagningar av piggvar och flundra skulle vara önskvärt men det är osäkert om en effekt av rensningarna slår igenom på grund av att överlevnaden i uppväxtområdena bestäms av en rad andra faktorer. Det kan vara så att en effekt endast tydligt kan påvisas vid rensning av extremt övergödda habitat. Vidare behöver övriga miljövariabler som turbiditet och syrehalt mätas flera gånger i samma område för att fånga variationen inom viken.

Tack

Ojaveer, E., Kaleis, M., Aps, R., Lablaika, I., and Vitins, M. 1985. The impact of recent environmental...
changes on the main commercial fish stocks in the Gulf of Finland. Finnish Fish. Res. 6: 1–14.

Bilaga A: Områdesbeskrivningar

Rensade områden

Bungeviken

Bungeviken är en mättligt exponerad och långgrund vik i rak sydlig riktning på Gotlands nordöstra sida nära Fårösund. Strand är endast ca 250 m. Bungeviken har rensats på släke av Smedbergs Gård AB under 2013-2014.

Ekeviken

Ekeviken är en exponerad, långgrund och lång vik i rak nordlig riktning på Fårö strax norr om Ullahau. Stranden sträcker sig ca 1 km. Stranden har sedan 2009 rensats med en Beach-Tech (se metodbeskrivningen) av lokala entreprenörer i samarbete med näringslivet på Fårö och kommunen.

Hideviken

Hideviken är en mättligt exponerad och långgrund vik i rak sydlig riktning i Hellvi på Gotlands nordöstra sida strax söder om Bunge. Hideviken har rensats på släke av en lokal lantbrukare under ett antal år samt under 2014. Smedbergs Gård AB har också hjälp till med en del av arbetet.

Slite

Stranden i Slite är mättligt exponerad med en sydostlig riktning. Strand är relativt kort med sina 230 m och delas av på mitten av en brygga. Strand har rensats av Smedbergs Gård AB under 2014.

Sandviken ER

Vi trodde först denna del av orensad men det visade sig vara tvärtom. Området utgörs av ca halva viken från östra kanten av naturreservatet till sysneudd.
Åminne

Sandviken R
Sandviken har en något lägre exponering och ligger i en rak sydlig riktning. Liksom de flesta andra vikar är Sandviken mycket långgrund. Denna del är ca 600 m lång och utgörs av naturreservatet som sträcker sig från den västra sidan vid parkeringen intill vägen till mitten av viken. Rensningen har utförts av Smedbergs Gård AB.

Lau
En mycket långgrund vik med hög exponering mot öster vid Snausarve i Lau. Förutom fisk finns här även många olika fågelsorter och är en populär lokal för ornitologer. Den rensade delen sträcker sig från gångvägen från parkeringen och ca 100 m söderut avgränsat av en liten vassudd. Området restaurerades av Smedbergs Gård AB. I slutet av juli och början av augusti 2014 var området hårt ansatt av blågröna alger.

När
Viken ligger strax norr om Närshamn, ligger i rakt sydlig riktning och är mättligt exponerad. Viken är långgrund. Den rensade delen sträcker sig i rak linje från den östra kanten av dammen i västra delen av viken och ca 290 m åt öst. Rensningen har utförts av ideella krafter med handredskap.

Herta
Herta är en exponerad och långgrund vik i sydostlig riktning söder om Närshamn i Burs. Stranden är ca 400 m lång och har rensats av Smedbergs Gård AB under 2014.
Ej rensade områden

Raudstajnssand
Viken är exponerad och en något mer nordostlig riktning jämfört med Ekeviken som befinner sig strax söder om Raudstajnssand. Stranden är ca 400 m lång. Det blir djupt fort jämfört med de flesta andra vikar som ingått i studien.

Kappelshamn

S:t Olofsholm

Tjälder
Tjälder ligger strax norr om Vitviken i Åminne och är exponerad mot öster. Det blir djupt snabbt och sandstranden är kort på endast ca 100 m. Det var endast möjligt att dra tre drag på varje djup här. Området ramar in av stenbumlingar både i norr och söder.

Ängmansvik
Området är en långgrund och relativt skyddad med ett läge mot norr strax väster om Katthammarsvik. Stranden är ca 200 m lång.
Sjaustru
En exponerad vik mot söder strax sydväst om Grynge. Viken är relativt lång på ca 600 m och det blir djupt snabbt. Vi samlade endast in miljövariabler här 2014 eftersom det var för höga vågor för att samla in fisk.

Lau
Den rensvade delen börjar ca 25 m från den rensvade delen och ca 100 m söderut. Behovet av rensvning i detta område är extremt stort.

När
Den orensade delen av viken vid Närshamn ligger strax intill den rensvade delen åt väster från kanten av dammen. Det finns en del stenbunlingar ute i vattnet förutom rena sandpartier. Behovet av rensvning i detta område är extremt stort.

Holmhällar
En mycket exponerad strand, ca 1 km lång, väster om Heligholmen i Holmhällar med ett läge rakt mot söder. Det blir snabbt djupt. I de östra delarna nära Heligholmen fanns ett parti med mycket blåmusslor där även vuxna flundror över 30 cm påträffades.

Gnisvärd
Ett mycket exponerat område mot sydväst strax norr om Tofta. Området är ca 400 m lång och varken långgrund eller snabbt sluttande.

Fröjel
En mycket exponerad vik mot väster med utsikt mot Karlsöarna. Området ligger norr om Sandhamn vid Gustavs i Fröjel. Området är långgrund och ca 800 m långt. Kanterna omgärdas av stenbumlingar och det finns en del grus längst in vid strandkanten vid vissa partier av stranden.
Vi tar Gotland längre
- i dialog och med helhetssyn

Länsstyrelsen ska se till att regeringens och riksdagens beslut, som påverkar länet, får så bra effekt som möjligt. Länsstyrelsen är den mest mångsidiga av Sveriges myndigheter. Våra ansvarsområden och vår kompetens spänner över hela samhällsområdet.

Vi arbetar med:
- att ge råd och information
- att bedriva tillsyn och kontrollera att olika verksamheter följer lagar och riktlinjer
- att ge tillstånd, pröva överklaganden av kommunala beslut och sammanställa information
- att samordna länsens krafter genom att ta initiativ till olika möten och aktiviteter
- att ge bidrag till verksamheter av olika slag.

Läs mer på www.lansstyrelsen.se/gotland

Länsstyrelsen i Gotlands län
Besöksadress: Visborgsallén 4, 621 85 VISBY
Telefon: 010-223 90 00, e-post: gotland@lansstyrelsen.se